Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Am J Physiol Cell Physiol ; 326(2): C317-C330, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38073487

RESUMO

Small organic molecules in the intestinal lumen, particularly short-chain fatty acids (SCFAs) and glucose, have long been postulated to enhance calcium absorption. Here, we used 45Ca radioactive tracer to determine calcium fluxes across the rat intestine after exposure to glucose and SCFAs. Confirming previous reports, glucose was found to increase the apical-to-basolateral calcium flux in the cecum. Under apical glucose-free conditions, SCFAs (e.g., butyrate) stimulated the cecal calcium fluxes by approximately twofold, while having no effect on proximal colon. Since SCFAs could be absorbed into the circulation, we further determined whether basolateral SCFA exposure rendered some positive actions. It was found that exposure of duodenum and cecum on the basolateral side to acetate or butyrate increased calcium fluxes. Under butyrate-rich conditions, cecal calcium transport was partially diminished by Na+/H+ exchanger 3 (NHE3) inhibitor (tenapanor) and nonselective transient receptor potential vanilloid subfamily 6 (TRPV6) inhibitor (miconazole). To confirm the contribution of TRPV6 to SCFA-stimulated calcium transport, we synthesized another TRPV6 inhibitor that was demonstrated by in silico molecular docking and molecular dynamics to occlude TRPV6 pore and diminish the glucose- and butyrate-induced calcium fluxes. Therefore, besides corroborating the importance of luminal molecules in calcium absorption, our findings provided foundation for development of more effective calcium-rich nutraceuticals in combination with various absorptive enhancers, e.g., glucose and SCFAs.NEW & NOTEWORTHY Organic molecules in the intestinal lumen, e.g., glucose and short-chain fatty acids (SCFAs), the latter of which are normally produced by microfloral fermentation, can stimulate calcium absorption dependent on transient receptor potential vanilloid subfamily 6 (TRPV6) and Na+/H+ exchanger 3 (NHE3). A selective TRPV6 inhibitor synthesized and demonstrated by in silico docking and molecular dynamics to specifically bind to the pore domain of TRPV6 was used to confirm a significant contribution of this channel. Our findings corroborate physiological significance of nutrients and SCFAs in enhancing calcium absorption.


Assuntos
Cálcio , Ácidos Graxos Voláteis , Ratos , Animais , Trocador 3 de Sódio-Hidrogênio/metabolismo , Cálcio/metabolismo , Simulação de Acoplamento Molecular , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/metabolismo , Butiratos/farmacologia , Proteínas de Transporte/metabolismo , Duodeno/metabolismo , Glucose/metabolismo , Absorção Intestinal
2.
Sci Rep ; 13(1): 21173, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040893

RESUMO

Iron overload negatively affects bone mass and strength. However, the impact of iron excess on osteocytes-important bone cells for mechanotransduction and remodeling-is poorly understood. Herein, we examined the effects of iron exposure on osteocytes during their maturation process. We discovered that iron overload caused apoptosis of osteocytes in early and late stages of differentiation. Notably, the expression of key proteins for iron entry was downregulated during differentiation, suggesting that mature osteocytes were less susceptible to iron toxicity due to limited iron uptake. Furthermore, iron overload also enriched a subpopulation of mature osteocytes, as indicated by increased expression of Dmp1, a gene encoding protein for bone mineralization. These iron-exposed osteocytes expressed high levels of Sost, Tnfsf11 and Fgf23 transcripts. Consistently, we demonstrated that exogenous FGF23 stimulated the formation and survival of osteoclasts, suggesting its regulatory role in bone resorption. In addition, iron overload downregulated the expression of Cx43, a gene encoding gap junction protein in the dendritic processes, and impaired YAP1 nuclear translocation in response to fluid flow in differentiated osteocytes. It can be concluded that iron overload induces cellular adaptation in differentiating osteocytes, resulting in insensitivity to mechanical stimulation and potential disruption of the balance in bone remodeling.


Assuntos
Reabsorção Óssea , Sobrecarga de Ferro , Humanos , Osteócitos/metabolismo , Mecanotransdução Celular/fisiologia , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
PeerJ ; 11: e16300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37872946

RESUMO

Background: Cellular senescence is an age-related physiological process that contributes to tissue dysfunction and accelerated onset of chronic metabolic diseases including hypertension. Indeed, elevation of blood pressure in hypertension coincides with premature vascular aging and dysfunction. In addition, onsets of metabolic disturbance and osteopenia in patients with hypertension have also been reported. It is possible that hypertension enhances premature aging and causes progressive loss of function in multiple organs. However, the landscape of cellular senescence in critical tissues affected by hypertension remains elusive. Materials and Methods: Heart, liver, bone, hypothalamus, and kidney were collected from spontaneously hypertensive rats (SHR) and age- and sex-matched normotensive Wistar rats (WT) at 6, 12, 24 and 36 weeks of age (n = 10 animals/group). Changes in mRNA levels of senescence biomarkers namely cyclin-dependent kinase (CDK) inhibitors (CDKIs), i.e., Cdkn2a (encoding p16Ink4a) and Cdkn1a (encoding p21cip1) as well as senescence-associated secretory phenotypes (SASPs), i.e., Timp1, Mmp12, Il6 and Cxcl1, were determined. Additionally, bone collagen alignment and hydroxy apatite crystal dimensions were determined by synchrotron radiation small- and wide-angle X-ray scattering (SAXS/WAXS) techniques. Results: Real-time PCR revealed that transcript levels of genes encoding CDKIs and SASPs in the heart and liver were upregulated in SHR from 6 to 36 weeks of age. Expression of Timp1 and Cxcl1 was increased in bone tissues isolated from 36-week-old SHR. In contrast, we found that expression levels of Timp1 and Il6 mRNA were decreased in hypothalamus and kidney of SHR in all age groups. Simultaneous SAXS/WAXS analysis also revealed misalignment of bone collagen fibers in SHR as compared to WT. Conclusion: Premature aging was identified in an organ directly affected by high blood pressure (i.e., heart) and those with known functional defects in SHR (i.e., liver and bone). Cellular senescence was not evident in organs with autoregulation of blood pressure (i.e., brain and kidney). Our study suggested that cellular senescence is induced by persistently elevated blood pressure and in part, leading to organ dysfunction. Therefore, interventions that can both lower blood pressure and prevent cellular senescence should provide therapeutic benefits for treatment of cardiovascular and metabolic consequences.


Assuntos
Senilidade Prematura , Hipertensão , Humanos , Ratos , Animais , Ratos Endogâmicos SHR , Senilidade Prematura/genética , Interleucina-6/genética , Espalhamento a Baixo Ângulo , Ratos Wistar , Difração de Raios X , Hipertensão/genética , Biomarcadores , RNA Mensageiro/genética , Colágeno/uso terapêutico
5.
RSC Adv ; 13(44): 30575-30585, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37859778

RESUMO

Bioceramic materials have a wide range of applications in the biomedical field, such as in the repair of bone defects and dental surgery. Silicate-based bioceramics have attracted biomedical researchers' interest due to their bioactivity and biodegradability. In this study, extended the scope of ZAS utilization in bone tissue engineering by introducing calcium-magnesium-silicate (diopside, CMS) as an interface material aim to develop a machinable bioceramic composite (ZASCMS) by the sol-gel method. The physicochemical characterization, in vitro biological properties and in vivo zebrafish cytotoxicity study of ZAS-based composites as a function of CMS contents, 0, 25, 50, 75 and 100 wt%, were performed. Results showed that the as-prepared ZASCMS possessed porous architecture with well-interconnected pore structure. Results also revealed that the mechanical properties of ZASCMS composite materials were gradually improved with increasing CMS contents. The ZASCMS composites with more than 50 wt% CMS had the highest compressive strength and modulus of 6.78 ± 0.62 MPa and 340.10 ± 16.81 MPa, respectively. Regarding in vitro bioactivities, the composite scaffolds were found to stimulate osteoblast-like UMR-106 cell adhesion, growth, and proliferation. The antibacterial activity of the ZASCMS composite scaffolds was tested against Staphylococcus epidermidis (S. epidermidis) and Escherichia coli (E. coli) also exhibited an antibacterial property. Furthermore, the in vivo studies using embryonic zebrafish were exposed to as-prepared particles (0-500 µg mL-1) and showed that the synthesized ZAS, CMS and ZASCMS composite particles were non-toxic based on the evaluation of survivability, hatching rate and embryonic morphology. In conclusions, our results indicated that the synthesized composite exhibited their biological properties and antibacterial activity, which could well be a promising material with high potential to be applied in orthopaedic and dental tissue engineering.

6.
FASEB J ; 37(11): e23262, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37855727

RESUMO

Obesity accelerates the aging processes, resulting in an aggravation of aging-induced osteoporosis. We investigated the anti-osteoporotic effect of hyperbaric oxygen therapy (HBOT) in obese- and lean-aged rats through measurement of cellular senescence, hypoxia, inflammation, antioxidants, and bone microarchitecture. Obese and lean male Wistar rats were injected with 150 mg/kg/day of D-galactose for 8 weeks to induce aging. Then, all rats were randomly given either sham or HBOT for 14 days. Metabolic parameters were determined. Expression by bone mRNA for cellular senescence, hypoxia, inflammation, antioxidative capacity, and bone remodeling were examined. Micro-computed tomography and atomic absorption spectroscopy were performed to evaluate bone microarchitecture and bone mineral profiles, respectively. We found that HBOT restored the alterations in the mRNA expression level of p16, p21, HIF-1α, TNF-α, IL-6, RANKL, RANK, NFATc1, DC-STAMP, Osx, ALP, and Col1a1 in the bone in obese-and lean- aging rats. In obese-aging rats, HBOT increased the level of expression of Sirt1 and CuZnSOD mRNA and diminished the expression level of HIF-2α and ctsk mRNA to the same levels as the control group. However, HBOT failed to alter catalase and OCN mRNA expression in obese-aged rats. HBOT partially improved the bone microarchitecture in obese-aged rats, but completely restored it in lean-aged rats. Interestingly, HBOT protected against obesity-induced demineralization in obese-aged rats. In summary, HBOT exerts an anti-osteoporotic effect in lean-aged rats and prevents some, but not all the negative effects of obese-aged conditions on bone health. Therefore, HBOT is considered as a potential therapy for aging-induced osteoporosis, regardless of obese status.


Assuntos
Oxigenoterapia Hiperbárica , Osteoporose , Ratos , Masculino , Animais , Ratos Wistar , Galactose , Microtomografia por Raio-X , Obesidade/complicações , Obesidade/terapia , Osteoporose/etiologia , Osteoporose/terapia , Inflamação , Hipóxia , RNA Mensageiro
7.
PLoS One ; 18(8): e0290106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37566598

RESUMO

Oral calcium and calcium plus vitamin D supplements are commonly prescribed to several groups of patients, e.g., osteoporosis, fracture, and calcium deficiency. Adequate and steady extracellular calcium levels are essential for neuronal activity, whereas certain forms of calcium supplement (e.g., CaCO3) probably interfere with memory function. However, it was unclear whether a long-term use of ionized calcium (calcium chloride in drinking water ad libitum), vitamin D supplement (oral gavage) or the combination of both affected anxiety and memory, the latter of which was probably dependent on the hippocampal neurogenesis. Here, we aimed to determine the effects of calcium and/or vitamin D supplement on the anxiety- and memory-related behaviors and the expression of doublecortin (DCX), an indirect proxy indicator of hippocampal neurogenesis. Eight-week-old male Wistar rats were divided into 4 groups, i.e., control, calcium chloride-, 400 UI/kg vitamin D3-, and calcium chloride plus vitamin D-treated groups. After 4 weeks of treatment, anxiety-, exploration- and recognition memory-related behaviors were evaluated by elevated pulse-maze (EPM), open field test (OFT), and novel object recognition (NOR), respectively. The hippocampi were investigated for the expression of DCX protein by Western blot analysis. We found that oral calcium supplement increased exploratory behavior as evaluated by OFT and the recognition index in NOR test without any effect on anxiety behavior in EPM. On the other hand, vitamin D supplement was found to reduce anxiety-like behaviors. Significant upregulation of DCX protein expression was observed in the hippocampus of both calcium- and vitamin D-treated rats, suggesting their positive effects on neurogenesis. In conclusion, oral calcium and vitamin D supplements positively affected exploratory, anxiety-like behaviors and/or memory in male rats. Thus, they potentially benefit on mood and memory in osteoporotic patients beyond bone metabolism.


Assuntos
Cálcio , Vitamina D , Ratos , Masculino , Animais , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Vitamina D/metabolismo , Cálcio/metabolismo , Ratos Wistar , Comportamento Exploratório , Cloreto de Cálcio/farmacologia , Ansiedade/tratamento farmacológico , Vitaminas/metabolismo , Cálcio da Dieta/metabolismo , Hipocampo/metabolismo
8.
Sci Rep ; 13(1): 9568, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311761

RESUMO

Inadequate calcium intake during childhood and adolescence is detrimental to bone metabolism. Here, we postulated that calcium supplement prepared from tuna bone with tuna head oil should benefit for skeletal development than CaCO3. Forty female 4-week-old rats were divided into calcium-replete diet (0.55% w/w, S1, n = 8) and low-calcium groups (0.15% w/w for 2 weeks; L; n = 32). Then L were subdivided into 4 groups (8/group), i.e., remained on L, L + tuna bone (S2), S2 + tuna head oil + 25(OH)D3 and S2 + 25(OH)D3. Bone specimens were collected at week 9. We found that 2 weeks on low calcium diet led to low bone mineral density (BMD), reduced mineral content, and impaired mechanical properties in young growing rats. Intestinal fractional calcium absorption also increased, presumably resulting from higher plasma 1,25(OH)2D3 (1.712 ± 0.158 in L vs. 1.214 ± 0.105 nM in S1, P < 0.05). Four-week calcium supplementation from tuna bone further increased calcium absorption efficacy, which later returned to the basal level by week 9. Calcium supplementation successfully restored BMD, bone strength and microstructure. However, 25(OH)D3 + tuna head oil + tuna bone showed no additive effect. Voluntary running also effectively prevented bone defects. In conclusion, both tuna bone calcium supplementation and exercise are effective interventions for mitigating calcium-deficient bone loss.


Assuntos
Doenças Ósseas Metabólicas , Corrida , Feminino , Animais , Ratos , Atum , Cálcio , Cálcio da Dieta/farmacologia , Suplementos Nutricionais
10.
Biochem Biophys Res Commun ; 659: 105-112, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37060830

RESUMO

Fibroblast growth factor (FGF)-23 and calcium-sensing receptor (CaSR) have previously been postulated to be parts of a negative feedback regulation of the intestinal calcium absorption to prevent excessive calcium uptake and its toxicity. However, the underlying mechanism of this feedback regulation remained elusive, especially whether it required transcription of FGF-23. Herein, we induced calcium hyperabsorptive state (CHS) by exposing intestinal epithelium-like Caco-2 monolayer to 30 mM CaCl2 and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] after which FGF-23 mRNA levels and transepithelial calcium flux were determined. We found that CHS upregulated FGF-23 transcription, which was reverted by CaSR inhibitors (Calhex-231 and NPS2143) but without effect on CaSR transcription. Although 10 nM 1,25(OH)2D3 was capable of enhancing transepithelial calcium flux, the higher-than-normal calcium inundation as in CHS led to a decrease in calcium flux, consistent with an increase in FGF-23 protein expression. Administration of inhibitors (≤10 µM CN585 and cyclosporin A) of calcineurin, a mediator of CaSR action to control transcription and production of its target proteins, was found to partially prevent FGF-23 protein production and the negative effect of CHS on calcium transport, while having no effect on FGF-23 mRNA expression. Direct exposure to FGF-23, but not FGF-23 + PD173074 (FGFR1/3 inhibitor), also completely abolished the 1,25(OH)2D3-enhanced calcium transport in Caco-2 monolayer. Nevertheless, CHS and CaSR inhibitors had no effect on the mRNA levels of calcineurin (PPP3CB) or its targets (i.e., NFATc1-4). In conclusion, exposure to CHS induced by high apical calcium and 1,25(OH)2D3 triggered a negative feedback mechanism to prevent further calcium uptake. CaSR and its downstream mediator, calcineurin, possibly contributed to the regulatory process, in part by enhancing FGF-23 production to inhibit calcium transport. Our study, therefore, corroborated the physiological significance of CaSR-autocrine FGF-23 axis as a local feedback loop for prevention of excessive calcium uptake.


Assuntos
Cálcio , Receptores de Detecção de Cálcio , Humanos , Células CACO-2 , Calcineurina , Cálcio/metabolismo , Cálcio da Dieta , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , RNA Mensageiro/genética
11.
Nanomaterials (Basel) ; 13(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36678008

RESUMO

Synthesized hydroxyapatite (sHA)-calcium phosphate (CaP) based biomaterials play a vital role and have been widely used in the process of bone regeneration for bone defect repair, due to their similarities to the inorganic components of human bones. However, for bone tissue engineering purpose, the composite components, physical and biological properties, efficacy and safety of sHA still need further improvements. In this work, we synthesized inhomogeneous hydroxyapatite based on biomimetic trace elements (Mg, Fe, Zn, Mn, Cu, Ni, Mo, Sr, Co, BO33-, and CO32-) co-doped into HA (THA) (Ca10-δMδ(PO4)5.5(CO3)0.5(OH)2, M = trace elements) via co-precipitation from an ionic solution. The physical properties, their bioactivities using in vitro osteoblast cells, and in vivo cytotoxicity using zebrafish were studied. By introducing biomimetic trace elements, the as-prepared THA samples showed nanorod (needle-like) structures, having a positively charged surface (6.49 meV), and showing paramagnetic behavior. The bioactivity studies demonstrated that the THA substrate can induce apatite particles to cover its surface and be in contact with surrounding simulated body fluid (SBF). In vitro biological assays revealed that the osteoblast-like UMR-106 cells were well-attached with growth and proliferation on the substrate's surface. Upon differentiation, enhanced ALP (alkaline phosphatase) activity was observed for bone cells on the surface of the THA compared with that on the control substrates (sHA). The in vivo performance in embryonic zebrafish studies showed that the synthesized THA particles are nontoxic based on the measurements of essential parameters such as survivability, hatching rate, and the morphology of the embryo. The mechanism of the ions release profile using digital conductivity measurement revealed that sustained controlled release was successfully achieved. These preliminary results indicated that the synthesized THA could be a promising material for potential practical applications in bone tissue engineering.

12.
Arch Orthop Trauma Surg ; 143(2): 729-738, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34453570

RESUMO

INTRODUCTION: Knee Osteoarthritis (OA) is a degenerative joint disease that needs consistent exercise and an accurate understanding of the condition for long-term maintenance. While the accessibility of outpatient care is essential for disease management, many patients lack the resources to receive adequate healthcare. To address this challenge, we developed a not-for-profit interactive mobile application that provides a disease-specific educational background and a structured exercise regimen to patients. MATERIAL AND METHODS: "Rak Kao" (English translation: Love-Your-Knee) mobile application was designed to analyze the questionnaire data to assess the stage of knee OA and generate a personalized recommendation of treatment and exercise type using rule-based and Artificial Intelligence (AI) techniques. A single-blinded study was conducted with patients (n = 82) who were randomly assigned to the mobile application group (M-group) and the handout group (H-group). Patient groups were controlled for age, gender, BMI, onset of pain, grade of disease, education level, and occupation. Accuracy in performance of three prescribed knee exercises (catch-bend-down, stretch-touch-feet, and sit-stretch-hold) was evaluated. Clinical outcomes were evaluated before and after the 4-weeks program to assess the range of motion, symptoms, pain, physical activity, and quality of life via the KOOS and KSS scores. RESULTS: Completion of the study led to significantly more overall exercise accuracy in the M-group (76.2%) than the H-group (52.5%). Activities of daily life, quality of life, ability to do sports and recreational activities were significantly more improved in the M-group than the H-group (p < .01). No difference in the range of motion between groups. Satisfaction of patients' experience was higher in the M-group than the H-group (p = .001) after the 4-week regimen. CONCLUSIONS: With the better accuracy and outcomes for rehabilitation in the M-group than the H-group, we strongly recommend using our mobile application as a better alternative than handouts for exercises and information for patients with knee OA. TRIAL REGISTRATION: ClinicalTrials.gov: NCT03666585.


Assuntos
Aplicativos Móveis , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/tratamento farmacológico , Qualidade de Vida , Inteligência Artificial , Terapia por Exercício/métodos , Exercício Físico , Dor , Resultado do Tratamento
13.
PLoS One ; 17(11): e0277096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36399482

RESUMO

Vasoactive intestinal peptide (VIP) as a neurocrine factor released by enteric neurons has been postulated to participate in the regulation of transcellular active calcium transport across intestinal epithelium, but the preceding evidence is scant and inconclusive. Herein, transepithelial calcium flux and epithelial electrical parameters were determined by Ussing chamber technique with radioactive tracer in the intestinal epithelium-like Caco-2 monolayer grown on Snapwell. After 3-day culture, Caco-2 cells expressed mRNA of calcium transporters, i.e., TRPV6, calbindin-D9k, PMCA1b and NCX1, and exhibited transepithelial resistance of ~200 Ω cm2, a characteristic of leaky epithelium similar to the small intestine. VIP receptor agonist was able to enhance transcellular calcium flux, whereas VIP receptor antagonist totally abolished calcium fluxes induced by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Since the intestinal cystic fibrosis transmembrane conductance regulator (CFTR) could be activated by VIP and calciotropic hormones, particularly parathyroid hormone, we sought to determine whether CFTR also contributed to the 1,25(OH)2D3-induced calcium transport. A selective CFTR inhibitor (20-200 µM CFTRinh-172) appeared to diminish calcium fluxes as well as transepithelial potential difference and short-circuit current, both of which indicated a decrease in electrogenic ion transport. On the other hand, 50 µM genistein-a molecule that could rapidly activate CFTR-was found to increase calcium transport. Our in silico molecular docking analysis confirmed direct binding of CFTRinh-172 and genistein to CFTR channels. In conclusion, VIP and CFTR apparently contributed to the intestinal calcium transport, especially in the presence of 1,25(OH)2D3, thereby supporting the existence of the neurocrine control of intestinal calcium absorption.


Assuntos
Cálcio , Regulador de Condutância Transmembrana em Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Cálcio/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia , Peptídeo Intestinal Vasoativo/metabolismo , Células CACO-2 , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Genisteína/metabolismo , Simulação de Acoplamento Molecular , Transporte de Íons , Mucosa Intestinal/metabolismo , Cálcio da Dieta/metabolismo
14.
PLoS One ; 17(8): e0273267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040915

RESUMO

Although iron is an essential element for hemoglobin and cytochrome synthesis, excessive intestinal iron absorption-as seen in dietary iron supplementation and hereditary disease called thalassemia-could interfere with transepithelial transport of calcium across the intestinal mucosa. The underlying cellular mechanism of iron-induced decrease in intestinal calcium absorption remains elusive, but it has been hypothesized that excess iron probably negates the actions of 1,25-dihydroxyvitamin D [1,25(OH)2D3]. Herein, we exposed the 1,25(OH)2D3-treated epithelium-like Caco-2 monolayer to FeCl3 to demonstrate the inhibitory effect of ferric ion on 1,25(OH)2D3-induced transepithelial calcium transport. We found that a 24-h exposure to FeCl3 on the apical side significantly decreased calcium transport, while increasing the transepithelial resistance (TER) in 1,25(OH)2D3-treated monolayer. The inhibitory action of FeCl3 was considered rapid since 60-min exposure was sufficient to block the 1,25(OH)2D3-induced decrease in TER and increase in calcium flux. Interestingly, FeCl3 did not affect the baseline calcium transport in the absence of 1,25(OH)2D3 treatment. Furthermore, although ascorbic acid is often administered to maximize calcium solubility and to enhance intestinal calcium absorption, it apparently had no effect on calcium transport across the FeCl3- and 1,25(OH)2D3-treated Caco-2 monolayer. In conclusion, apical exposure to ferric ion appeared to negate the 1,25(OH)2D3-stimulated calcium transport across the intestinal epithelium. The present finding has, therefore, provided important information for development of calcium and iron supplement products and treatment protocol for specific groups of individuals, such as thalassemia patients and pregnant women.


Assuntos
Calcitriol , Cálcio , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Células CACO-2 , Calcitriol/metabolismo , Calcitriol/farmacologia , Cálcio/metabolismo , Cálcio da Dieta/metabolismo , Eletrólitos/metabolismo , Feminino , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Ferro/metabolismo , Ferro da Dieta/metabolismo , Gravidez
15.
Sci Rep ; 12(1): 7398, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513484

RESUMO

The endocannabinoid system has been postulated to help restrict cancer progression and maintain osteoblastic function during bone metastasis. Herein, the effects of cannabinoid receptor (CB) type 1 and 2 activation on breast cancer cell and osteoblast interaction were investigated by using ACEA and GW405833 as CB1 and CB2 agonists, respectively. Our results showed that breast cancer cell (MDA-MB-231)-derived conditioned media markedly decreased osteoblast-like UMR-106 cell viability. In contrast, media from MDA-MB-231 cells pre-treated with GW405833 improved UMR-106 cell viability. MDA-MB-231 cells were apparently more susceptible to both CB agonists than UMR-106 cells. Thereafter, we sought to answer the question as to how CB agonists reduced MDA-MB-231 cell virulence. Present data showed that co-activation of CB1 and CB2 exerted cytotoxic effects on MDA-MB-231 cells by increasing apoptotic cell death through suppression of the NF-κB signaling pathway in an ROS-independent mechanism. ACEA or GW405833 alone or in combination also inhibited MDA-MB-231 cell migration. Thus, it can be concluded that the endocannabinoid system is able to provide protection during breast cancer bone metastasis by interfering cancer and bone cell interaction as well as by the direct suppression of cancer cell growth and migration.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Endocanabinoides/farmacologia , Feminino , Humanos , Osteoblastos/metabolismo , Receptores de Canabinoides
16.
Sci Rep ; 12(1): 8580, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595806

RESUMO

We aimed to compare the time-course effect of D-galactose (D-gal)-induced aging, obesity, and their combined effects on bone homeostasis. Male Wistar rats were fed with either a normal diet (ND; n = 24) or a high-fat diet (HFD; n = 24) for 12 weeks. All rats were then injected with either vehicle or 150 mg/kg/day of D-gal for 4 or 8 weeks. Blood was collected to measure metabolic, aging, oxidative stress, and bone turnover parameters. Bone oxidative stress and inflammatory markers, as well as bone histomorphometry were also evaluated. Additionally, RAW 264.7 cells were incubated with either D-gal, insulin, or D-gal plus insulin to identify osteoclast differentiation capacity under the stimulation of receptor activator of nuclear factor κB ligand. At week 4, D-gal-induced aging significantly elevated serum malondialdehyde level and decreased trabecular thickness in ND- and HFD-fed rats, when compared to the control group. At week 8, D-gal-induced aging further elevated advanced glycation end products, increased bone inflammation and resorption, and significantly impaired bone microarchitecture in HFD-fed rats. The osteoclast number in vitro were increased in the D-gal, insulin, and combined groups to a similar extent. These findings suggest that aging aggravates bone dyshomeostasis in the obese condition in a time-dependent manner.


Assuntos
Envelhecimento , Galactose , Envelhecimento/fisiologia , Animais , Galactose/farmacologia , Insulina/metabolismo , Masculino , Obesidade/complicações , Obesidade/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar
17.
Sci Rep ; 12(1): 5959, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396390

RESUMO

Thalassemia causes anemia, ineffective erythropoiesis, bone loss and iron accumulation in several tissues, e.g., liver, bone and heart, the last of which leads to lethal cardiomyopathy and arrhythmia. Although exercise reportedly improves bone density in thalassemic mice, exercise performance is compromised and might pose risk of cardiovascular accident in thalassemic patients. Therefore, we sought to explore whether mild-intensity physical activity (MPA) with 30-50% of maximal oxygen consumption was sufficient to benefit the heart and bone. Herein, male hemizygous ß-globin knockout (BKO) mice and wild-type littermates were subjected to voluntary wheel running 1 h/day, 5 days/week for 3 months (MPA group) or kept sedentary (SDN; control). As determined by atomic absorption spectroscopy, BKO-MPA mice had less iron accumulation in heart and bone tissues compared with BKO-SDN mice. Meanwhile, the circulating level of fibroblast growth factor-23-a factor known to reduce serum iron and intestinal calcium absorption-was increased early in young BKO-MPA mice. Nevertheless, MPA did not affect duodenal calcium transport or body calcium retention. Although MPA restored the aberrant bone calcium-phosphorus ratio to normal range, it did not change vertebral calcium content or femoral mechanical properties. Microstructural porosity in tibia of BKO-MPA mice remained unaltered as determined by synchrotron radiation X-ray tomographic microscopy. In conclusion, MPA prevents cardiac and bone iron accumulation, which is beneficial to thalassemic patients with limited physical fitness or deteriorated cardiac performance. However, in contrast to moderate-intensity exercise, MPA does not improve bone mechanical properties or reduce bone porosity.


Assuntos
Talassemia beta , Animais , Osso e Ossos/diagnóstico por imagem , Cálcio , Humanos , Ferro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Porosidade
18.
Life Sci ; 295: 120406, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35182555

RESUMO

AIMS: To investigate the effects of hyperbaric oxygen therapy (HBOT) on metabolic disturbance, aging and bone remodeling in D-galactose-induced aging rats with and without obesity by determining the metabolic parameters, aging and oxidative stress markers, bone turnover markers, bone microarchitecture, and bone biomechanical strength. MATERIALS AND METHODS: Male Wistar rats were fed either a normal diet (ND; n = 18) or a HFD (n = 12) for 22 weeks. At week 13, vehicle (0.9% NaCl) was injected into ND-fed rats (NDV; n = 6), while 150 mg/kg/day of D-galactose was injected into 12 ND-fed rats (NDD) and 12 HFD-fed rats (HFDD) for 10 weeks. At week 21, rats were treated with either sham (NDVS, NDDS, or HFDDS; n = 6/ group) or HBOT (NDDH, or HFDDH; n = 6/group) for 14 days. Rats were then euthanized. Blood samples, femora, and tibiae were collected. KEY FINDINGS: Both NDD and HFDD groups developed aging as indicated by increased AGE level, increased inflammation and oxidative stress as shown by raised serum TNF-α and MDA levels, impaired bone remodeling as indicated by an increase in levels of CTX-1, TRACP-5b, and impaired bone structure/strength, when compared with those of the NDVS group. HFD aggravated these indicators of bone dyshomeostasis in D-galactose-treated rats. HBOT restored bone remodeling and bone structure/strength in the NDD group, however HBOT ameliorated bone dyshomeostasis in the HFDD group. SIGNIFICANCE: HBOT is a potential intervention to decrease the risk of osteoporosis and bone fracture in aging with or without obesity.


Assuntos
Envelhecimento/fisiologia , Osso e Ossos/metabolismo , Oxigenoterapia Hiperbárica/métodos , Fatores Etários , Animais , Remodelação Óssea/fisiologia , Osso e Ossos/fisiologia , Dieta Hiperlipídica , Galactose/efeitos adversos , Galactose/farmacologia , Homeostase , Inflamação/metabolismo , Resistência à Insulina , Masculino , Obesidade/metabolismo , Obesidade/fisiopatologia , Osteoporose/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar
19.
PLoS One ; 16(10): e0258433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34644351

RESUMO

Abnormal calcium absorption and iron overload from iron hyperabsorption can contribute to osteoporosis as found in several diseases, including hemochromatosis and thalassemia. Previous studies in thalassemic mice showed the positive effects of the iron uptake suppressor, hepcidin, on calcium transport. However, whether this effect could be replicated in other conditions is not known. Therefore, this study aimed to investigate the effects of hepcidin on iron and calcium uptake ability under physiological, iron uptake stimulation and calcium uptake suppression. To investigate the potential mechanism, effects of hepcidin on the expression of iron and calcium transporter and transport-associated protein in Caco-2 cells were also determined. Our results showed that intestinal cell iron uptake was significantly increased by ascorbic acid together with ferric ammonium citrate (FAC), but this phenomenon was suppressed by hepcidin. Interestingly, hepcidin significantly increased calcium uptake under physiological condition but not under iron uptake stimulation. While hepcidin significantly suppressed the expression of iron transporter, it had no effect on calcium transporter expression. This indicated that hepcidin-induced intestinal cell calcium uptake did not occur through the stimulation of calcium transporter expression. On the other hand, 1,25(OH)2D3 effectively induced intestinal cell calcium uptake, but it did not affect intestinal cell iron uptake or iron transporter expression. The 1,25(OH)2D3-induced intestinal cell calcium uptake was abolished by 12 mM CaCl2; however, hepcidin could not rescue intestinal cell calcium uptake suppression by CaCl2. Taken together, our results showed that hepcidin could effectively and concurrently induce intestinal cell calcium uptake while reducing intestinal cell iron uptake under physiological and iron uptake stimulation conditions, suggesting its therapeutic potential for inactive calcium absorption, particularly in thalassemic patients or patients who did not adequately respond to 1,25(OH)2D3.


Assuntos
Cálcio/metabolismo , Hepcidinas/farmacologia , Transporte de Íons/efeitos dos fármacos , Ferro/metabolismo , Células CACO-2 , Calcitriol/farmacologia , Cloreto de Cálcio/farmacologia , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Regulação para Cima/efeitos dos fármacos
20.
Biochem Biophys Rep ; 27: 101054, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34189282

RESUMO

Parathyroid hormone (PTH) has previously been shown to enhance the transepithelial secretion of Cl- and HCO3 - across the intestinal epithelia including Caco-2 monolayer, but the underlying cellular mechanisms are not completely understood. Herein, we identified the major signaling pathways that possibly mediated the PTH action to its known target anion channel, i.e., cystic fibrosis transmembrane conductance regulator anion channel (CFTR). Specifically, PTH was able to induce phosphorylation of protein kinase A and phosphoinositide 3-kinase. Since the apical HCO3 - efflux through CFTR often required the intracellular H+/HCO3 - production and/or the Na+-dependent basolateral HCO3 - uptake, the intracellular pH (pHi) balance might be disturbed, especially as a consequence of increased endogenous H+ and HCO3 - production. However, measurement of pHi by a pH-sensitive dye suggested that the PTH-exposed Caco-2 cells were able to maintain normal pH despite robust HCO3 - transport. In addition, although the plasma membrane Na+/K+-ATPase (NKA) is normally essential for basolateral HCO3 - uptake and other transporters (e.g., NHE1), PTH did not induce insertion of new NKA molecules into the basolateral membrane as determined by membrane protein biotinylation technique. Thus, together with our previous data, we concluded that the PTH action on Caco-2 cells is dependent on PKA and PI3K with no detectable change in pHi or NKA abundance on cell membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...